Agent
Agent
The agent command passes off a multi-step orchestration task to an AI agent. This allows delegation of complex, multi-step tasks using natural language.
Note: This command is not yet implemented.
Arguments:
@argument("command", type=str)
@option("--context", "-c", multiple=True, help="Additional context files or paths for the agent")
@option("--model", "-m", type=str, help="AI model to use (if configured)")
@option("--interactive", "-i", is_flag=True, help="Run in interactive mode with feedback")
Planned Examples
# Analyze and create a dashboard
trilogy agent "analyze sales trends and create a dashboard"
# Ingest and validate new data
trilogy agent "ingest new data and run validation tests"
# Optimize queries
trilogy agent "optimize query performance for customer reports"
# With additional context
trilogy agent "create ETL pipeline" -c existing_models/ -c requirements.txt
# Interactive mode
trilogy agent "refactor the data model" --interactive
Notes
- Requires AI agent configuration in
trilogy.toml - The
--interactiveflag enables step-by-step feedback during execution - Context files help the agent understand your project structure
